Нейтрон

Нейтро́н — элементарная частица, не имеющая заряда. Нейтроны вместе с протонами образуют атомное ядро (кроме ядра водорода) и называются общим термином нуклон. Нейтрон принадлежит к классу барионов.

Нейтрон
Символ n^{0}\,\!
Масса 939,565530(38)
Античастица \bar{n}^{0}\,\!
Классы бозон, адрон, барион, N-барион, нуклон
Квантовые числа
Электрический заряд 0
Спин 1/2
Изотопический спин 1/2
Барионное число 1
Странность 0
Очарование 0
Другие свойства
Время жизни 885,7(3) c
Схема распада p^+ + e^- + \bar{\nu}_e
Кварковый состав udd

Содержание

Открытие

Открытие нейтрона (1932) принадлежит физику Дж. Чедвику, за которое он получил Нобелевскую премию по физике в 1935 году.

В 1930 Вальтер Боте и Г. Бекер, работавшие в Германии, обнаружили, что если высосокоэнергетичные альфа-частицы, испускаемые полонием попадают на некоторые легкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей способностью. Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей способностью, чем все известные гамма-лучи и результаты эксперимента не могут быть таким образом интерпретированы. Важный вклад сделали в 1932 Ирен и Фредерик Жолио-Кюри. Они показали, что если это неизвестное излучение попадает на парафин или любое другое соединение, богатое водородом, образуются протоны высоких энергий. Само по себе это ничему не противоречило, но численные результаты приводили к нестыковкам в теории. Позднее в том же 1932 английский физик Джеймс Чедвик провел серию экспериментов, в которых он показал, что гамма-лучевая гипотеза несостоятельна. Он предположил, что это излучение состоит из незаряженных частиц с массой близкой к массе протона, и произвел серию экспериментов, подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами от латинского корня neutral и обычного для частиц суффикса on (он).

Основные характеристики

Несмотря на нулевой электрический заряд, нейтрон не является истинно нейтральной частицей. Античастицей нейтрона является антинейтрон, который не совпадает с самим нейтроном.

Строение и распад

Считается установленным, что нейтрон является связанным состоянием трёх кварков: одного «верхнего» (u) и двух «нижних» (d) кварков (кварковая структура udd). Поразительная близость масс протона и нейтрона обусловлена свойством приближённой изотопической инвариантности: в протоне (кварковая структура uud) один d-кварк заменяется на u-кварк, но поскольку массы этих кварков очень близки, такая замена слабо сказывается на массе составной частицы.

Поскольку нейтрон всё же тяжелее протона, то он может распадаться в свободном состоянии. Единственный канал распада, разрешенный законом сохранения энергии и законами сохранения электрического заряда, барионного и лептонного квантовых чисел, является распад на протон, электрон и электронное антинейтрино; он носит название бета-распад нейтрона. Поскольку этот распад идёт с образованием лептонов и изменением аромата кварков, то он обязан происходить только за счёт слабого взаимодействия. Однако ввиду специфических свойств слабого взаимодействия, скорость этой реакции аномально мала из-за крайне малого энерговыделения (разности масс начальных и конечных частиц). Именно этим объясняется тот факт, что нейтрон является настоящим долгожителем среди элементарных частиц: его время жизни примерно в миллиард раз больше времени жизни мюона — следующей за нейтроном метастабильной частице по времени жизни.

Кроме того, разница масс между протоном и нейтроном порядка 1,3 МэВ невелика по меркам ядерной физики. В результате, в ядрах нейтрон может находиться в более глубокой потенциальной яме, чем протон, и потому бета-распад нейтрона оказывается энергетически невыгодным. Это приводит к тому, что в ядрах нейтрон может быть стабильным.

Изоспины нейтрона и протона одинаковы (1/2), но их проекции противоположны по знаку. Проекция изоспина нейтрона по соглашению в физике элементарных частиц принимается равной −1/2, в ядерной физике +1/2 (поскольку в большинстве ядер нейтронов больше, чем протонов, это соглашение позволяет избегать отрицательных суммарных проекций изоспина).

Направления исследований в физике нейтронов

Фундаментальные исследования

  • возможность существования тетра-нейтронов и иных связанных состояний из одних только нейтронов
  • изучение возможных нейтрон-антинейтронных осцилляций
  • поиск электрического дипольного момента нейтрона
  • изучение свойств сильно нейтроно-избыточных лёгких ядер

Прикладные исследования

  • получение и хранение холодных нейтронов
  • влияние потоков нейтронов на живые ткани и организмы
  • влияние сверхмощных потоков нейтронов на свойства материалов
  • изучение распространения нейтронов в различных средах
  • нейтронно-дифракционный анализ
  • нейтронно-активационный анализ

См. также

Ссылки

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home