Корень многочлена

Корень многочлена

a_0+a_1x+\dots+a_nx^n

над полем k — элемент c\in k, который после подстановки его вместо x обращает уравнение

a_0+a_1x+\dots+a_nx^n=0

в тождество.

Свойства

  • Если c является корнем многочлена p(x), то p(x) делится без остатка на xc (теорема Безу).
  • Число вещественных корней многочлена с вещественными коэффициентами степени n заведомо меньше либо равно n. При этом комплексные корни многочлена (если они есть) сопряжены, таким образом, многочлен четной степени может иметь только четное число вещественных корней, а многочлен нечётной — только нечётное.
  • Всякий многочлен p(x) с вещественными или комплексными коэффициентами имеет, по крайней мере, один, вообще говоря, комплексный корень (основная теорема алгебры).
p(x) = a_n(x-c_1)(x-c_2)\dots(x-c_n),
где c_1,c_2,\dots,c_n — (в общем случае комплексные) корни многочлена p(x), возможно с повторениями, при этом если среди корней c_1,c_2,\dots,c_n многочлена p(x) встречаются равные, то общее их значение называется кратным корнем.

Нахождение корней

Способ нахождения корней линейных и квадратичных многочленов, то есть способ решения линейных и квадратных уравнений, был известен ещё в древнем мире. Поиски формулы для точного решения общего уравнения третьей степени продолжались долгое время (следует упомянуть метод, предложенный Омаром Хайямом), пока не увенчались успехом в первой половине XVI века в трудах Сципиона дель Ферро, Никколо Тарталья и Джероламо Кардано. Формулы для корней квадратных и кубических уравнений позволили сравнительно легко получить формулы для корней уравнения четвертой степени.

То, что корни общего уравнения пятой степени и выше не выражаются при помощи рациональных функций и радикалов от коэффициентов было доказано норвежским математиком Нильсом Абелем в 1826 г. Это совсем не означает, что корни такого уравнения не могут быть найдены. Во-первых, в частных случаях, при некоторых комбинациях коэффициентов корни уравнения при некоторой изобретательности могут быть определены. Во-вторых, существуют формулы для корней уравнений 5-й степени и выше, использующие, однако, специальные функции — эллиптические или гипергеометрические (см., к примеру, корень Бринга).

В случае, если все коэффициенты многочлена рациональны, то нахождение его корней приводится к нахождению корней многочлена с целыми коэффициентами. Для рациональных корней таких многочленов существуют алгоритмы нахождения перебором кандидатов с использованием схемы Горнера, причем при нахождении целых корней перебор может быть существенно уменьшен приемом чистки корней. Также в этом случае можно использовать полиномиальный LLL-алгоритм.

Для приблизительного нахождения вещественных корней многочлена с вещественными коэффициентами используются итерационные методы, например, метод секущих, метод бисекции, метод Ньютона. Количество вещественных корней многочлена на интервале может быть оценено при помощи теоремы Штурма.

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home