Задача Римана о распаде произвольного разрыва

Задача Римана о распаде произвольного разрыва — задача о построении аналитического решения нестационарных уравнений механики сплошных сред, в применении к распаду произвольного разрыва. Полностью решена в ограниченном круге частных случаев — для уравнений газовой динамики идеального газа и некоторых более точных приближений (т.н. газ с двучленным уравнением состояния) и уравнений теории мелкой воды. Решение для уравнений магнитной газовой динамики построимо, по всей видимости, вплоть до необходимости численного решения одного достаточно сложного обыкновенного дифференциального уравнения.

Постановка

Решается одномерная задача о распаде разрыва - то есть полагается, что до начального момента времени t = 0 две области пространства с различными значениями термодинамических параметров (для газовой динамики это плотность, скорость и давление газа) были разделены тонкой перегородкой, а в начальный момент времени перегородку убирают. Требуется построить решение (то есть зависимость всех термодинамических параметров от времени и координаты) при произвольных начальных значениях переменных.

Решение

Решение ищется в виде набора элементарных волн, определяющегося структурой системы уравнений. В частности, для газовой динамики это: ударная волна,волна разрежения, контактный разрыв.

Оказывается, что для систем уравнений, записываемых в дивергентной форме, решение будет автомодельным.

Применение

Решение задачи Римана находит применение в численных методах при решении нестационарных задач с большими разрывами. Именно на решении (точном или приближенном) задачи Римана о распаде разрыва основывается метод Годунова решения систем нестационарных уравнений механики сплошной среды.

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home