Кривая Безье

Кривы́е Безье́ были разработаны в 60-х годах XX века независимо друг от друга Пьером Безье из автомобилестроительной компании «Рено» и Полем де Кастелжо из компании «Ситроен», где применялись для проектирования кузовов автомобилей. Несмотря на то, что открытие де Кастельжо было сделано несколько раньше Безье, его исследования не публиковались и скрывались компанией как производственная тайна до конца 1960-х. Именем де Кастельжо назван разработанный им рекурсивный метод вычисления и построения кривых (алгоритм де Кастельжо).

Впоследствии это открытие стало одним из важнейших инструментов систем автоматизированного проектирования и программ компьютерной графики.

Содержание

Определение

Кривая Безье — параметрическая кривая, задаваемая выражением

\mathbf{B}(t)=\sum^n_{i=0} \mathbf{P}_i \mathbf{b}_{i,n}(t),\quad 0<t<1

где \mathbf{P}_i — функция компонент векторов опорных вершин, а \mathbf{b}_{i,n}(t) — базисные функции кривой Безье, называемые также полиномами Бернштейна.

\mathbf{b}_{i,n}(t)={n \choose i} t^i(1-t)^{n-i}
{n \choose i}=\frac{n!}{i!(n-i)!}, где n — степень полинома, i — порядковый номер опорной вершины

Виды кривых Безье

Линейные кривые

При n = 1 кривая представдяет собой отрезок прямой линии, опорные точки P0 и P1 определяют его начало и конец. Кривая задаётся уравнением:

\mathbf{B}(t)=(1-t)\mathbf{P}_0 + t\mathbf{P}_1 \quad t \in [0,1].

Квадратные кривые

Квадратная кривая Безье (n = 2) задаётся 3-я опорными точками: P0, P1 и P2.

\mathbf{B}(t) = (1 - t)^{2}\mathbf{P}_0 + 2t(1 - t)\mathbf{P}_1 + t^{2}\mathbf{P}_2, \quad t \in [0,1].

Квадратные кривые Безье в составе сплайнов используются для описания формы символов в шрифтах TrueType.

Кубические кривые

В параметрической форме кубическая кривая Безье (n = 3) описывается следующим уравнением:

\mathbf{B}(t) = (1-t)^3\mathbf{P}_0 + 3t(1-t)^2\mathbf{P}_1 + 3t^2(1-t)\mathbf{P}_2 + t^3\mathbf{P}_3, \quad t \in [0,1].

Четыре опорные точки P0, P1, P2 и P3, заданные в 2-х или 3-мерном пространстве определяют форму кривой.

Линия берёт начало из точки P0 направляясь к P1 и заканчивается в точке P3 подходя к ней со стороны P2. То есть кривая не проходит через точки P1 и P2, они используются для указания её направления. Длина отрезка между P0 и P1 определяет, как скоро кривая кривая повернёт к P3.

В матричной форме кубическая кривая Безье записывается следующим образом:

\mathbf{B}(t) = \begin{bmatrix}t^3&t^2& t& 1\end{bmatrix}\mathbf{M}_B \begin{bmatrix}\mathbf{P}_0\\\mathbf{P}_1\\\mathbf{P}_2\\\mathbf{P}_3\end{bmatrix},

где \mathbf{M}_B называется базисной матрицей Безье:

\mathbf{M}_B = \begin{bmatrix}-1&3&-3&1\\3&-6&3&0\\-3&3&0&0\\1&0&0&0\end{bmatrix}

В современных графических системах, таких как PostScript, Metafont и GIMP для представления криволинейных форм используются сплайны Безье, составленные из кубических кривых.

История

Кривые Безье были опубликованы в 1962 французским инженером Пьером Безье, который использовал их для проектирования автомобильных корпусов. Кривые были развиты в 1959 Полем де Кастельжо, использующим алгоритм Кастельжо.

Применение в компьютерной графике

Благодаря простоте задания и возможности удобно манипулировать формой, кривые Безье нашли широкое применение в компьютерной графике для моделирования гладких линий. Поскольку кривая полностью определяется своей выпуклой оболочкой из опорных точек, последние могут быть отображены и использоваться для наглядного управления формой линии. Кроме того аффинные преобразования кривой (перенос, масштабирование, вращение) также легко могут быть осуществлены путём применения трансформаций к опорным точкам.

Наибольшее значение имеют кубические кривые Безье. Кривые высших степеней при обработке требуют большего объёма вычислений и для практических целей используются реже. Для построения сложных по форме линий отдельные кривые Безье могут быть последовательно соединены друг с другом в сплайн Безье.

Литература

  • Роджерс Д., Адамс Дж. Математические основы машинной графики. — М.: Мир, 2001.
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home