Равновесие Нэша

В теории игр равновесием Нэша (названным в честь Джона Форбса Нэша, который предложил его) называется тип решений игры двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив своё решение в одностороннем порядке, когда другие участники не меняют решения. Такая совокупность стратегий выбранных участниками и их выигрыши называются равновесием Нэша.

Концепция равновесия Нэша (РН) не совсем точно придумана Нэшем, Антуан Августин Курно показал, как найти то, что мы называем равновесием Нэша в игре Курно. Соответственно, некоторые авторы называют его равновесием Нэша-Курно. Однако Нэш первым показал в своей диссертации Некооперативные игры (1950), что равновесия Нэша должны существовать для всех конечных игр с любым числом игроков. До Нэша это было доказано только для игр с 2 участниками с нулевой суммой Джоном фон Нейманом и Оскаром Моргернштерном (1947).

Формальное определение

Допустим, \ (S, f) — игра, где \ S— набор чистых стратегий, а \ f— набор выигрышей. Когда каждый игрок i \in \{1, ..., n\} выбирает стратегию x_i \in S в профиле стратегий \ x = (x_1, ..., x_n), игрок \ i получает выигрыш \ f_i(x). Заметьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии, выбранной самим игроком i, но и от чужих стратегий. Профиль стратегий x^* \in S является равновесием по Нэшу, если изменение своей стратегии не выгодно ни одному игроку, то есть для любого \ i

f_i(x^*) \geq f_i(x_i, x^*_{-i}).

Игра может иметь равновесие Нэша в чистых стратегиях или в смешанных (то есть при выборе чистой стратегии стохастически с фиксированной частотой). Нэш доказал, что если разрешить смешанные стратегии, тогда в каждой игре для n игроков будет хотя бы одно равновесие Нэша.


 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home